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Abstract. The concept of e-approximate optimal solution as widely used in nonconvex global
optimization is not quite adequate, because such a point may correspond to an objective
function value far from the true optimal value, while being infeasible. We introduce a concept

of essential e-optimal solution, which gives a more appropriate approximate optimal solution,
while being stable under small perturbations of the constraints. A general method for finding
an essential e-optimal solution in finitely many steps is proposed which can be applied to d.c.

programming and monotonic optimization.
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1. Introduction

A wide class of global optimization problems have the form

minffðxÞjhðxÞP0; x 2 Dg; ðPÞ
where f, h are real-valued continuous functions on R

n; and D is a nonempty
robust compact set in R

n
þ; i.e. such that

D ¼ clðintDÞ 6¼ ;:
Most often D ¼ fxjgðxÞO0g, with g(x) being a real-valued continuous
function. Two typical cases of this problem that have been studied in the
recent literature are the canonical reverse convex programming problem [6]
(when f, g, h are convex functions) and the canonical monotonic optimiza-
tion Problem [7] (when f, g, h are increasing functions; recall from [7] that
a function f : Rn

þ ! R is said to be increasing if fðx0ÞPfðxÞ whenever
x0PxP0): With rare exceptions, solution methods so far developed for
problem (P) compute (in fact) a global optimal solution �xðeÞ 2 X of the
e-relaxed problem

minffðxÞjhðxÞ þ eP0; x 2 Deg; ðPeÞ
where De ¼ fxjgðxÞOeg and e is a small positive number (see e.g. [1–4,
6],. . .). Note that when the constraint hðxÞP0 replaces a system like
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hiðxÞP0 ði ¼ 1; . . . ;m1Þ, kjðxÞO0 ðj ¼ 1; . . . ;m2Þ, lq(x) ¼ 0 (q ¼ 1; . . . ;m3),
then the e-relaxation is hiðxÞP� e, ði ¼ 1; . . . ;m1Þ, kjðxÞOe,
ðj ¼ 1; . . . ;m2Þ, jlqðxÞjO eðq ¼ 1; . . . ;m3Þ. Since �xðeÞ is almost feasible for
e > 0 small and any cluster point of the sequence f�xðeÞ; e > 0g gives a glo-
bal optimal solution of (P), each �xðeÞ is accepted as an approximate global
optimal solution of (P) with tolerance e > 0 and is usually referred to as an
e-approximate optimal solution. Although this has long been a common
practice in global optimization, it turns out, as we will show in the sequel,
that the concept of e-approximate optimal solution may be quite inade-
quate. Actually, an e-approximate optimal solution may happen to be quite
far from the true optimum.
A more appropriate concept of approximate optimal solution is that of

g-optimal solution. A vector x� is called an g-optimal solution of problem
(P) if it is feasible and satisfies fðx�Þ � fðxÞOg for all feasible solutions x.
[other variations of this concept exist: for instance a feasible solution x� is
called g-optimal if fðx�Þ � fðxÞOgð1þ fðx�ÞÞ for all feasible solutions x.]
Typically, to solve (P) an infinite sequence of feasible solutions fxkg is

generated such that fðxkÞOminffðxÞjhðxÞP0;x 2 Dg þ gk, with gk ! 0, so
that xk is an g-optimal solution when gk < g. However, if the optimal solu-
tion happens to be an isolated feasible point, i.e. a point x which is the
center of a ball containing no feasible point other than x itself, then such a
sequence cannot be generated. Therefore, for finding an g-optimal solution
in finitely many steps, one usually requires that the feasible set
S ¼ fx 2 DjhðxÞP0g has no isolated point, i.e.

S ¼ S�; ð1Þ
where S� denotes the derived set (the set of cluster points) of S. Clearly this
condition is satisfied if S ¼ clðintSÞðS is robustÞ:

fx 2 DjhðxÞP0g ¼ clfx 2 intDjhðxÞ > 0g;

which in view of the continuity of f(x) also amounts to saying that prob-
lem (P) is regular:

minffðxÞjx 2 Sg ¼ infffðxÞjx 2 intSg; ð2Þ
or equivalently, because D is robust, that

minffðxÞjhðxÞP0; x 2 Dg ¼ infffðxÞjhðxÞ > 0; x 2 intDg: ð3Þ
Condition (1) (in particular, the regularity condition) rules out the exis-
tence of isolated feasible solutions.
The trouble, however, is that quite often checking the regularity assump-

tion is far from being an easy task, so in practice one has to solve the prob-
lem without knowing its regularity status. This leads to replacing the given
problem by its e-relaxation ðPeÞ. Though the latter problem is easily seen to
be regular, an optimal solution of it, i.e. an e-approximate optimal solution
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of (P), can rarely be computed exactly in finitely many iterations. Therefore,
by this approach, the best that one can expect to compute in finitely many
iterations is an g-optimal solution of ðPeÞ, sometimes referred to as an
ðe; gÞ-approximate optimal solution of the original problem.
The above considerations pose the necessity to re-examine the concept of

approximate optimal solution in global optimization and to revise accord-
ingly many existing algorithms for problems of the form (P). In any case,
from the viewpoint of practical applications, robustness is an important
property to demand of numerical methods for nonconvex global optimiza-
tion.
The organization of the paper is as follows. In Section 2 we show the

pitfall connected with the concept of e-approximate optimal solution. In
Sections 3 and 4 we introduce the concept of essential e-optimal solution
and present a general method for finding such an essential e-optimal solu-
tion. In Section 5 this approach is applied to devise robust algorithms
called SIT algorithms for d.c. optimization and monotonic optimization.
In Section 6, a small monotonic optimization problem is solved to illus-
trate how a SIT algorithm works. Section 7 closes the paper by some con-
clusions about the range of applicability of the proposed approach.

2. Pitfall of Approximate Optimality

It seems worthwhile pointing out the pitfall connected with the concept of
e-approximate optimal solution, as defined in the Introduction and widely
used, sometimes implicitly, in the literature on global optimization.
Although an e-approximate optimal solution f�xðeÞg tends to a feasible solu-
tion as e& 0, it may not satisfy the constraint hðxÞP0, i.e. it may be infeasi-
ble. Since, on the other hand, fð�xðeÞÞ tends to the optimal value c of (P), the
value fð�xðeÞÞ should be close to c when e is sufficiently small. That is, for
any given d > 0 there exists e0 ¼ e0ðdÞ > 0 such that fð�xðeÞÞ < cþ d when-
ever 0 < e < e0. The difficulty is that, as a rule, e0 is far from being easy to
determine, so for a given small e > 0, we can never be sure that e < e0 and it
is quite possible that fð�xðeÞÞ > cþ d. In other words, even for small e > 0,
the value fð�xðeÞÞ may be quite far from the actual optimal value c; and a
notable error may be made by accepting �xðeÞ as an approximate optimal
solution.
This is apparent from the example depicted in Figure 1, for a regular

Problem (P) with the following data:

fðxÞ ¼ x2 � 2x1; hðxÞ ¼ x21 þ x22 � x1x2 � 6x1 þ 4:999999;

D ¼ fðx1;x2Þjx1 þ x2O10;�2x1 � 3x2O� 6;

2x2 � x1O8;x1 � x2O4;x1P0;x2P0g
:
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This is a linear program with an additional reverse convex constraint.
The point x* ¼ (7, 3) is infeasible but almost feasible: x� 2 D, hðx�Þ ¼
�0:000001. For e1 ¼ 0:00001, the e1-approximate optimal solution is
�xðe1Þ ¼ ð7:000003; 2:999994Þ, with fð�xðe1ÞÞ ¼ �11:000013, far from the
true optimal solution and close to x�. But for e2 ¼ 0:000001, an e2-
approximate optimal solution is �xðe2Þ ¼ ð4:996094; 5:003906Þ with
fð�xð�2ÞÞ ¼ �4:988281, quite close to the true optimal solution.
Thus, even for regular problems the e-relaxation approach may give an

incorrect optimal solution if e is not sufficiently small, while in practice we
often do not know what exactly means ‘‘sufficiently small’’.
This situation motivates the following definitions:
Given a problem (P), the set S� of cluster points of its feasible set (i.e. of

its nonisolated feasible solutions) is called its essential feasible set, and a
nonisolated feasible solution x� of (P) is called an essential optimal solution
of it if

fðx�Þ ¼ minffðxÞjx 2 S�g;
i.e. if x� is the minimum of fðxÞ over the essential feasible set S� ¼
clfx 2 DjhðxÞ > 0g. Assume fxjhðxÞ > 0; x 2 Dg 6¼ ;. A nonisolated feasible
solution �x of problem (P) is called an essential e-optimal solution if it satisfies

fð�xÞ � e O infffðxÞjhðxÞ > e; x 2 Dg: ð4Þ
Since D is compact, the sequence f�xðeÞg of essential e-optimal solutions of
(P) has a cluster point x* which is an essential optimal solution.

REMARK 1. For regular problems an essential optimal solution is necessar-
ily optimal. In the general case it may not be so, but, since it is the best
among all nonisolated feasible solutions, hence stable under small perturba-
tions of the constraints, it should be in practice preferred to the true, but
unstable, optimal solution.

Figure 1. Inadequate e-approximate optimal solution.
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3. Essential Optimality Criterion

In light of the above discussion, an algorithm for problem (P) that only gives
an e-approximate optimal solution may not be quite correct. In this and the
next sections we propose a method to avoid this pitfall and to always guar-
antee at least an essential e-optimal solution in finitely many steps.
Let w 2 Rn be any point such that fðwÞ � e > fðxÞ8 x 2 D. We first inves-

tigate the following subproblem of incumbent transcending:
(*) Given an �x 2 R

n, find a nonisolated feasible solution x̂ of (P) such that
fðx̂ÞO fð�xÞ � e, or else establish that none such x̂ exists.
Clearly, if �x ¼ w then an answer to (�) would give a nonisolated feasible

solution or else identify essential infeasibility of the problem. If ð�xÞ is the
best nonisolated feasible solution currently available then an answer to ð�Þ
would give a new nonisolated feasible solution x̂ with fðx̂ÞO fð�xÞ � e, or
else identify �x as an essential e-optimal solution.
Since the essential optimal value is upper bounded in view of the compact-

ness of D, by successively solving a finite sequence of subproblems (�) we
will finally come up with an essential e-optimal solution, or an evidence that
the problem is essentially infeasible. The key thus reduces to investigating
the incumbent transcending subproblem (�). To this end, consider the set

fx 2 DjfðxÞOcg; ð5Þ

where c 2 R. In many cases of interest, for every fixed c this set is robust,
i.e.

fx 2 DjfðxÞOcg ¼ clfx 2 DjfðxÞ < cgÞ; ð6Þ
so that the problem

maxfhðxÞjfðxÞOc; x 2 Dg ðP�=cÞ

is regular. As we shall show in the sequel, it turns out that under assump-
tion (6) the incumbent transcending subproblem (*) can be solved by solv-
ing ðP�=cÞ for c ¼ fð�xÞ � e.
Denote the optimal values of (P) and ðP�=cÞ by minðPÞ and maxðP�=cÞ,

respectively.

PROPOSITION 1. Under assumption (6):

(i) Any feasible solution x of ðP�=cÞ such that hðxÞ > 0 is a nonisolated
feasible solution of (P) with fðxÞOc. In particular, if maxðP�=cÞ > 0
then the optimal solution x̂ of ðP�=cÞ is a nonisolated feasible solution
of (P) with fðx̂ÞOc.

(ii) If maxðP�=cÞOe for c ¼ fð�xÞ � e, and �x is a nonisolated feasible
solution of (P), then it is an essential e-optimal solution of (P). If
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maxðP�=cÞOe for c ¼ fð�xÞ � e, and �x ¼ w, then the problem (P) is
essentially infeasible.

Proof. (i) By (6) x is the limit of an infinite sequence fxkg such that
xk 2 D, fðxkÞ < c. Since h(x) > 0, one can assume hðxkÞ > 0 8k, so
each xk is a feasible solution of (P) and therefore, x is a nonisolated
feasible solution of (P). That fðxÞOc follows from the fact that x is a
feasible solution of ðP�=cÞ.

(ii) By regularity of ðP�=cÞ, if maxðP�=cÞOe then

eP supfhðxÞjfðxÞ < c; x 2 Dg;

so for every x 2 D satisfying fðxÞ < c we must have hðxÞOe. Hence
fðxÞP c for every x 2 D such that hðxÞ > e, i.e.

inff fðxÞjhðxÞ > e; x 2 DgPfð�xÞ � e:

The latter inequality implies, if �x is a nonisolated feasible solution, that it is
an essential e-optimal solution, and if �x ¼ w, that fxjhðxÞ > e; x 2 Dg ¼ ;,
i.e. that the problem is essentially infeasible. (

4. Finding an Essential �-optimal Solution

Based on the above Proposition 1 one can develop a procedure for finding
an essential e-optimal solution in finitely many steps. Assume the following
condition (A):
(A) For every fixed c 2 R the problem ðP�=cÞ is regular (i.e. condition (6)

holds), and for any �x 2 R
n a procedure called Procedure ð�; �xÞ is available

which terminates after finitely many steps at either of the following events:

(a) A nonisolated feasible solution x̂ of (P) is found with fð ^xÞO fð�xÞ � e;
(b) An evidence is produced that no such x̂ exists.

In the next Section we will show that this assumption is fulfilled for at least
the two important special classes of problems (P) mentioned in the Intro-
duction, namely:

I. Canonical d.c. programming ðD ¼ fxjgðxÞO0g, and f, g, h are convex
functions) (see e.g. [6]);

II. Canonical monotonic optimization (D ¼ fxjgðxÞO0g, and f, g, h are
increasing functions on R

n
þ) (see e.g. [7]).

Under Assumption (A) we can state the next algorithm for finding an
essential e-optimal solution of problem (P). Since the algorithm proceeds
basically by successive incumbent transcending, we will refer to it as a SIT
algorithm.

312 HOANG TUY



SIT Algorithm
Step 0. If no nonisolated feasible solution for (P) is known, let �x ¼ w;

otherwise, let �x be the best nonisolated feasible solution avail-
able.

Step 1. Call procedure ð�; �xÞ. Go to Step 2 if this procedure terminates
at event (a). Go to Step 3 if it terminates at event (b).

Step 2. Reset �x x̂ and return to Step 0.
Step 3. Terminate: if �x ¼ w; the problem (P) is essentially infeasible;

otherwise, �x is an essential e-optimal solution.

PROPOSITION 2. A SIT algorithm terminates after finitely many steps,
yielding either an essential e-optimal solution of (P) (which may be an e-
optimal solution), or evidence that (P) is essentially infeasible.

Proof. At every occurrence of event (a) the value fð�xÞ decreases at least by
e > 0. Since fð�xÞ is obviously bounded below on the compact set D, it fol-
lows that event (a) cannot occur infinitely many times. Therefore the algo-
rithm must terminate after finitely many steps. (

REMARK 2. The algorithm consists of a number of cycles, each involving a
procedure ð�; �xÞ, with the last �x being the sought essential e-optimal solution.
Each time the algorithm returns to Step 0, instead of starting the new Proce-
dure ð�; �xÞ from scratch it is often possible to start it from the information
already gathered at this stage. In that way the algorithm becomes a unified
procedure. This will be illustrated in the robust algorithms for d.c. and
monotonic optimization to be discussed in the next Section.

5. Application: Robust d.c. and Monotonic Optimization

As is well known, every d.c. or monotonic optimization problem can be
reduced to the canonical form [5, 7]. To apply the above approach to these
two classes of problems, we prove in this section that Assumption (A) is
fulfilled for both of them.

5.1. D.C. OPTIMIZATION

Consider the canonical reverse convex program

minffðxÞjhðxÞP0; x 2 Dg; ðCDCÞ
where D ¼ fxjgðxÞO0g is compact, with int D 6¼ ;, while f, g, h are convex
finite functions on an open neighbourhood of D and there exists c such
that

gðcÞ < 0; hðcÞ < 0; fðcÞ < minffðxÞj hðxÞP 0; x 2 Dg
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(so the constraint hðxÞP0 is essential). The incumbent transcending prob-
lem associated with any �x 2 R

n is

maxfhðxÞjfðxÞOc; x 2 Dg: ðCDC�=cÞ;
with c ¼ fðx̂Þ � e. Clearly

fx 2 DjfðxÞOcg ¼ clfx 2 intD; fðxÞ < cg; (
so the problem ðCDC�=cÞ is regular.
An outer approximation or a branch and bound algorithm for solving

the convex maximization problem ðCDC�=cÞ as described e.g. in [6] will
provide a procedure ð�; �xÞ for (CDC). In fact, such an algorithm generates
a sequence of nonisolated feasible solutions xk of ðCDC�=cÞ together with
a sequence of upper bounds bk satisfying

hðxkÞOmaxðCDC�=cÞObk; 0 < bk � hðxkÞ ! 0ðk! þ1Þ:
Then either there exists k such that hðxkÞ > 0, or hðxkÞO0 8k. In the for-
mer case, by Proposition 1,(i), xk is a nonisolated feasible solution with
fðxkÞOfð�xÞ � e. In the latter case, since bk � hðxkÞ ! 0, one must have
limk!þ1 bkO0, hence there exists k such that bkOe: Then
maxðCDC�=cÞOe, and since c ¼ fð�xÞ � e, it follows from Proposition 1, (ii),
that �x is an essential e-optimal solution of (CDC) if it is a nonisolated fea-
sible solution, or that the problem is essentially infeasible if �x ¼ w.
For example a SIT algorithm for (CDC) based on an outer approxima-

tion algorithm for solving ðCDC�=cÞ would read as follows.

5.1.1. A SIT Algorithm for (CDC)

Let w be any point where fðwÞ � e > minf fðxÞjx 2 Dg.
Step 0. If no nonisolated feasible solution is known, let �x ¼ w; otherwise,

let �x be the best nonisolated feasible solution of (CDC) available.
Let c ¼ fð�xÞ � e, P1 ¼ any simple polytope enclosing
E :¼ fx 2 Dj fðxÞOcg, V1 ¼ vertex set of P1. Set k ¼ 1.

Step 1. Compute zk 2 argmaxfhðxÞjx 2 Vkg.
(a) If bk :¼ hðzkÞOe, terminate: if �x is an isolated feasible solution, it

is an essential e-optimal solution of (CDC); if �x ¼ w, the problem
(CDC) is essentially infeasible.

(b) If hðzkÞ > e, go to Step 2.
Step 2. Compute xk ¼ cþ kkðzk � cÞ such that gcðxkÞ :¼ maxffðxkÞ�

c; gðxkÞg ¼ 0.

(a) If hðxkÞ > 0 then xk is a nonisolated feasible solution of
ðCDC�=cÞ: go to Step 3.

(b) If hðxkÞO0; go to Step 4.
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Step 3. Compute the point �xk where the line segment joining c to xk

meets the surface hðxÞ ¼ 0. Reset �x �xk, P1  Pk, V1  Vk,
and return to Step 0.

Step 4. Take pk 2 @fðxkÞ if fðxkÞ � c ¼ 0 or pk 2 @gðxkÞ if gðxkÞ ¼ 0.
Compute the vertex set Vkþ1 of the polytope Pkþ1 ¼ Pk\
fxjhpk; x� xkiO0g, increment k and return to Step 1.

PROPOSITION 3. The above algorithm terminates after finitely many steps,
yielding either an essential e-optimal solution of (CDC) or an evidence that
the problem is essentially infeasible.

Proof. It is easily seen that the algorithm must terminate at either Step (1a)
or Step (2a). Indeed, otherwise the algorithm is an infinite outer procedure
for solving the convex maximization problem maxfhðxÞj fðxÞ� cO0; x 2 Dg.
Under the stated conditions, this outer procedure is guaranteed to converge,
i.e. bk � hðxkÞ ! 0 as k! þ1. Since hðxkÞO 0 8k, we must have
bkObk � hðxkÞ ! 0 as k! þ1, contradicting bk ¼ hðzkÞ > e 8k (Step 1b)).
Therefore, the algorithm must terminate after finitely many steps. (

REMARK 3. If we denote DðcÞ ¼ fx 2 Dj fðxÞOcg, C ¼ fxj hðxÞO0g, then
the incumbent transcending problem ðCDC�=cÞ amounts to finding a point
x 2 DðcÞnC or else proving that DðcÞ � C. Therefore ðCDC�=cÞ is a variant
of the problem DC defined in [6], Chapter 5. Actually the above algorithm
is a robust variant of the OA Algorithm for (CDC) described in [6] and
differs from the latter mainly in that condition hðzkÞO� e in the OA Algo-
rithm is replaced by hðzkÞOe.

5.2. MONOTONIC OPTIMIZATION

Monotonic optimization is concerned with mathematical programming
problems described by means of monotonic (increasing or decreasing) func-
tions, and more generally, differences of monotonic (d.m.) functions. It
includes, in particular, polynomial and posynomial programming. In [7] a
general mathematical framework has been developed for the study of
monotonic optimization. However, as most existing algorithms of continu-
ous nonconvex global optimization, the algorithms proposed in [7] have
been devised without much concern about robustness.
Based on the above discussion, we now present a robust algorithm for

the canonical monotonic optimization

minffðxÞj hðxÞP0; gðxÞO0; x 2 ½a; b�g; ðCMOÞ
where ½a; b� � R

n
þ, and f, g, h are increasing functions on R

n
þ.
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As was demonstrated in [7], this is the general form of any monotonic
optimization problem. We shall make the following natural assumptions:

(1) hðaÞ < 0 (which means essentially that the contraint hðxÞP0 can-
not be dropped);

(2) fðaÞ < minðCMOÞ < fðbÞ;
(3) fxjgðxÞ < 0; a < x < bg 6¼ ;.

In view of the last assumption (3), for any fixed c such that
minðCMOÞ < c < fðbÞ there is x 2 ½a; b� satisfying fðxÞ < c, gðxÞ < 0, and
the set

fx 2 ½a; b�jfðxÞOc; gðxÞO0; x 2 ½a; b�g
is robust, so the problem

maxfhðxÞjfðxÞOc; gðxÞO0; x 2 ½a; b�g ðCMO�=cÞ
is regular.
It is not difficult to derive a procedure ð�; �xÞ for (CMO) from the poly-

block approximation algorithm for ðCMO�=cÞ [7]. Below we prefer, how-
ever, to derive it from a branch and cut algorithm for solving ðCMO�=cÞ,
which is believed to be more efficient than the polyblock approximation
method on large scale problems.

5.2.1. Procedure ð�; �xÞ for (CMO)

A branch and bound algorithm for solving the monotonic optimization
problem ðCMO�=cÞ can be outlined as follows.
At a general iteration, we have a collection of nonoverlapping subboxes

of ½a; b� known to contain at least an optimal solution of ðCMO�=cÞ and
such that for each subbox M an upper bound bðMÞ of hðxÞ over M has
been estimated. We then select the subbox with largest upper bound and
subdivide it into two boxes using an exhaustive rule, i.e. a rule ensuring
that any infinite nested sequence of boxes to be generated by it will eventu-
ally shrink to a single point. Each of the newly formed boxes is then
reduced (replaced by a smaller box) without losing any feasible point cur-
rently still of interest. Next an upper bound is computed for h(x) over each
of the new boxes and the procedure continues with the new collection of
boxes. During the process, the current best value of h(x) is updated and
used in the reduction of the new boxes and the pruning of the current col-
lection of boxes. Thus, the algorithm involves, aside from the standard par-
titioning operation, a reduction and a bounding operation.
The reduction and bounding operations are based on specific cuts that

exploit the monotonic structure of the problem.
First observe that if hð�xÞ > 0, then, since hðaÞ < 0, the halfline from a

through �x meets the surface h(x) ¼ 0 at some x¢ which is a nonisolated
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feasible solution with fðx0ÞOfð�xÞ, as fðxÞ is increasing. Therefore, by
replacing �x with x0 if necessary, we can always assume that �x is a noniso-
lated feasible solution satisfying hð�xÞ ¼ 0. With this in mind, we can
restrict the search for a nonisolated feasible solution of ðCMO�=cÞ such
that fðxÞOc to the set

Bc :¼ fxjfðxÞ � cO0; gðxÞO0; hðxÞ ¼ 0g: ð7Þ

5.2.1.1. Reduction. Let ½p; q� � ½a; b� be a box generated during the parti-
tioning procedure. The reduction of the box ½p; q� aims at replacing ½p; q�
by a smaller box ½p0; q0� � ½p; q� such that every point x of the set Bc that is
contained in ½p; q� is still contained in ½p0; q0�, i.e. such that

Bc \ ½p0; q0� ¼ Bc \ ½p; q�:
Setting

~gcðxÞ ¼ maxffðxÞ � c; gðxÞ; hðxÞg
we can write

Bc ¼ fxj ~gcðxÞO0OhðxÞg:
LEMMA 1. (i) If hðqÞ < 0 or ~gcð pÞ > 0, then Bc \ ½ p; q� ¼ ;.
(ii) If hðqÞP0, then the box ½ p0; q� where p0 ¼ q�

Pn
i¼1 aiðqi � piÞei, with

ai ¼ supfaj0OaO1; hðq� aðqi � piÞeiÞP0g; i ¼ 1; . . . ; n; ð8Þ

still contains Bc \ ½ p; q�:
(iii) If ~gcð p0ÞO0, then the box ½ p0; q0� where q0 ¼ p0 þ

Pn
i¼1 biðqi � p0iÞei,

with

bi ¼ supfbj 0ObO1; ~gcðp0 þ bðqi � p0iÞeiÞO0g; i ¼ 1; . . . ; n; ð9Þ

still contains Bc \ ½ p; q�:

Proof. It suffices to prove (ii), because (iii) can be proved analogously,
while (i) is obvious (follows from the fact that ~gcðxÞ and hðxÞ are increas-
ing). Since p0i ¼ aipi þ ð1� aiÞqi with 0OaiO1, it follows that
piOp0i � qi 8i ¼ 1; . . . ; n, i.e.½ p0; q� � ½ p; q�. Let

H :¼ fxj hðxÞP0g:
For any x 2 H \ ½ p; q� we have, because hðxÞ is increasing, ½x; q� � H, so
xi ¼ q� ðqi � xiÞei 2 H, i ¼ 1; . . . ; n. But xiOqi, so xi ¼ q� aðqi � piÞei
with 0OaO1. This implies that aOai, i.e. xiPq� aiðqI � piÞei, i ¼ 1; . . . ; n,
and consequently xPp0, i.e. x 2 ½ p0; q�. Thus, H \ ½ p; q� � H \ ½ p0; q�, which
completes the proof because the converse inclusion is obvious from the fact
½ p0; q� � ½ p; q�. (
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Clearly the box ½p0; q� defined in (ii) is obtained from ½p; q� by cutting
off the set [ni¼1fxjxi < p0ig, while the box ½p; q0� defined in (iii) is obtained
from ½ p; q� by cutting off the set [ni¼1fxjxi > q0ig. The cut [ni¼1fxjxi > p0ig
is referred to as a lower c-valid cut with vertex p0, and the cut
[ni¼1fxjxi > q0ig as an upper c-valid cut with vertex q0, applied to the box
½ p; q�. Using these cuts we next define a box redc½ p; q� referred to as
c-valid reduction of ½ p; q� :

redc½ p; q� ¼
; if h(q) < 0 or ~gcðp0Þ > 0,

½p0; q0� h(q) P0 & ~gcðp0ÞO0;

(

ð10Þ

where

p0 ¼ q�
Xn

i¼1
aiðqi � piÞei; q0 ¼ p0 þ

Xn

i¼1
biðqi � p0iÞei ð11Þ

ai ¼ supfaj0OaO1; hðq� aðqi � piÞeiÞP0g; i ¼ 1; . . . ; n;

bi ¼ supfbjj0ObO1; ~gcðp0 þ bðqi � p0iÞeiÞO0g; i ¼ 1; . . . ; n:
ð12Þ

5.2.1.2. Bounding. Given a box M :¼ ½ p; q�, we want to compute an upper
bound bðMÞ for hðxÞ over the set

Bc \ ½ p; q� ¼ fx 2 ½ p; q�j ~gcðxÞO0OhðxÞg:
After reducing ½ p; q� as described above, let ½ p; q�  ½ p0; q0� :¼ redc½ p; q�.
Since hðxÞ is increasing, an obvious upper bound is

bðMÞ ¼ hðqÞ: ð13Þ
Though very simple, this bound suffices to ensure convergence of the algo-
rithm, as we will see shortly. However, for a better performance of the pro-
cedure, tighter bounds can be computed using, for instance, the following.

LEMMA 2. Let xðMÞ ¼ pþ kðq� pÞ with k ¼ maxfajgcðpþ aðq� pÞÞO0g,
and let

zi ¼ qþ ðxiðMÞ � qiÞei; i ¼ 1; . . . ; n

Then an upper bound of hðxÞ over the set Bc \ ½ p; q� is
bðMÞ ¼ maxfhðziÞj i ¼ 1; . . . ; ng

Proof. The function gcðxÞ is increasing and satisfies gcðpÞO 0 < gcðqÞ
because otherwise Bc \ ½ p; q� ¼ ;. Therefore 0O k < 1 and gcðxðMÞÞ ¼ 0. If
x satisfies xðMÞ < xOq then there exists x0 ¼ pþ aðq� pÞ such that k < a
and xðMÞ < x0Ox. This implies that 0 ¼ gcðxðMÞÞ < gcðx0ÞOgcðxÞ, hence
gcðxÞ < 0 for all x satisfying xðMÞ < xOq. Let Gc ¼ fx 2 ½ p; q�jgcðxÞ > 0g,
K ¼ fxj xðMÞ < xOq, Ki ¼ fx 2 ½ p; q�j xiðMÞ < xig. Then Gc � ½ p; q�nK ¼
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½ p; q�n \ni¼1 Ki ¼ [ni¼1ð½ p; q�nKiÞ. Since ½ p; q�nKi ¼ fx 2 ½ p; q�jxiOxiðMÞg ¼
½ p; zi�, it follows that, for every x 2 Gc, there exists i such that xOzi, hence
hðxÞOhðziÞ, and consequently, hðxÞOmaxfhðziÞj i ¼ 1; . . . ; ng 8x 2 Gc. (

REMARK 4. The set Q ¼ [i¼1;...;n½ p; zi� is called a polyblock generated by
z1; . . . ; zn. Clearly Gc � Q ¼ ½ p; q�nK, so Q is what remains from ½ p; q� after
the cut K ¼ fxj xðMÞ < xOqg. Since q 2 K, while q 62 Gc :¼ fxj gcðxÞO0g,
the polyblock Q separates the point q from G. The cut K ¼ fxj xðMÞ <
xOqg is therefore called a separation cut.
Using the above bounding and the standard bisection for partitioning, a

branch and bound can be developed for solving (CMO). Denote by Mk the
partition set (box) selected for partition at iteration k and let xk ¼ xðMkÞ,
bk ¼ bðMkÞ.

PROPOSITION 4. xk is a nonisolated feasible solution of (CMO*/c) satisfying

hðxkÞOmaxðCMO�=cÞObk; bk � hðxkÞ ! 0ðk! þ1Þ:
Proof. Since gcðxkÞ ¼ maxffð�xÞ � c; gðxkÞO0g, it follows that xk is a feasi-
ble solution of (CMO). This feasible solution is nonisolated because the set
Gc ¼ fx 2 ½a; b�j fðxÞOc; gðxÞO0g is robust. It remains to show that
bk � hðxkÞ ! 0 as k! þ1. But since the subdivision rule is exhaustive, as
k! þ1, there exists a nested sequence of Mk ¼ ½ pk; qk� such that diam
Mk ! 0. Then qk � xk ! 0 and hence, hðqkÞ � hðxkÞ ! 0. Since hðxkÞO
maxðCMO�=cÞObkOhðqkÞ, it follows that bk � hðxkÞ ! 0 as k! þ1. (

5.2.2. A SIT Algorithm for (CMO)

Incorporating the above branch-reduce-and-bound procedure into the SIT
scheme we obtain the following robust algorithm for solving (CMO):
Step 0. If no feasible solution is known, let �x ¼ w, otherwise, let �x be the

best nonisolated feasible solution available. Let c ¼ fð�xÞ � e,
P1 ¼ fM1g, M1 ¼ ½a; b�, R1 ¼ ;. Set k ¼ 1.

Step 1. For each box M 2 Pk:
– Compute its c-valid reduction;
– Delete M if redcM ¼ ;;
– Replace M by redcM if redcM 6¼ ;;
– If redcM ¼ ½ p0; q0� then compute an upper bound bðMÞO hðq0Þ
for fðxÞ over the feasible solutions in M.

Step 2. Let P0k be the collection of boxes that results from Pk after com-
pletion of Step 1. Let R0k ¼ Rk [ P0k.

Step 3. If R0k ¼ ;, then terminate: �x is an essential e-optimal solution of
(CMO) if �x 6¼ w, or the problem (CMO) is essentially infeasible
if �x ¼ w.
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Step 4. If R0k 6¼ ;, let ½ pk; qk� :¼Mk 2 argmaxfbðMÞjM 2 R0kg, bk ¼
bðMkÞ. If bkOe then terminate: �x is an essential e-optimal solu-
tion of (CMO) if �x 6¼ w or the problem (CMO) is essentially
infeasible if �x ¼ w. Otherwise, go to Step 5.

Step 5. Compute xk ¼ pk þ kkðqk � pkÞ with

kk ¼ maxfaj fðpk þ aðqk � pkÞ � cO0; gðpk þ aðqk � pkÞO0g:

If hðxkÞ > 0 then xk is a new nonisolated feasible solution of
(CMO) with fðxkÞOc: compute the point �xk where the line seg-
ment joining pk to xk meets the surface hðxÞ ¼ 0, and reset
�x �xk.

Step 6. Divide Mk into two subboxes by the standard bisection (or any
bisection consistent with the bounding M7!bðMÞÞ. Let Pkþ1 be
the collection of these two subboxes of Mk;Rkþ1 ¼ R0knfMkg.
Increment k, and return to Step 1.

PROPOSITION 5. The above algorithm terminates after finitely many steps,
yielding either an essential e-optimal solution of (CMO), or an evidence that
the problem is essentially infeasible.

Proof. Since any feasible solution x with fðxÞOc ¼ fð�xÞ � e must lie in some
box M 2 R0k the event R0k ¼ ; implies that no such solution exists, hence
the conclusion in Step 3. If bkOe in Step 4, then maxðCMO�=cÞOe, hence
by Proposition 1, the same conclusion in Step 4. Since hðpkÞO0, if
hðxkÞ > 0, then the point �xk exists and satisfies gð�xkÞOgðxkÞO0,
fð�xkÞOfðxkÞOc, hð�xkÞ ¼ 0, so �xk is a nonisolated feasible solution with
fð�xkÞOfð�xÞ � e. Thus the conclusion is correct if one of the following events
occurs: R0k ¼ ;, bkOe, hðxkÞ > 0. It remains to show that at least one of
these events must occur, i.e. that for sufficiently large k Steps 5 and 6 cannot
occur. But since each occurrence of Step 5 increases the current best value
at least by e > 0 while f(x) is bounded above it follows that Step 5 cannot
occur infinitely often. On the other hand, in Step 6 we have hðxkÞO0 and
since bkÞ > e, while bk � hðxkÞ ! 0 as k! þ1, it follows that Step 6 can-
not occur infinitely often either. Therefore, the algorithm must be finite. (

The complexity of the above algorithm is about the same as that of a
branch and cut algorithm for solving directly (CMO) (see [8]), but an advan-
tage of it is that it works its way to the optimum through better and better
nonisolated feasible solutions. Therefore, even if for some reason a SIT algo-
rithm has to be stopped prematurely, some reasonably good feasible solu-
tion may have been already obtained. This is in contrast with many existing
algorithms which may give useless results when stopped prematurely.
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6. Illustrative Example

The SIT Algorithm for (CDC) only slightly differs from the OA Algorithm
described e.g. in [6]. To illustrate how the SIT Algorithm for (CMO)
works, let us consider a small example:

min x1 þ x22
s.t. 0:75x1 þ x2P5:5

ðx1 � 3Þ3 þ x2O3
x21 þ x22O36
0Ox1O6; 0Ox2O6:

This is a problem (CMO) with fðxÞ ¼ x22 þ x1, hðxÞ ¼ 0:75x1 þ x2 � 5:5,
gðxÞ ¼ maxfðx1 � 3Þ3 þ x2 � 3; x21 þ x22 � 36g, a = (0, 6), b = (0, 6). The
associated problem ðCMO�=cÞ is

max 0:75x1 þ x2 � 5:5
s.t. ðx1 � 3Þ3 þ x2O3

x21 þ x22O36
x1 þ x22Oc
0Ox1O6; 0Ox2O6

With e ¼ 0:001 the SIT Algorithm found the essential e-optimal solution
xessopt ¼ ð1:999408; 4:000444Þ with essential e-optimal value 18.002961 (see
Figure 2) at iteration 35, and needed 4 more iterations to confirm essential
e-optimality. The computation required 0.016 s on a PC Pentium IV
2.53 GHz, RAM 256 MB DDR, and went through 11 cycles of incumbent
transcending, with intermediate results as given in Table 1. (�x is the new
incumbent found at the end of the cycle, and Iter indicates the iteration
where �x is found.)
For e ¼ 0:000001 and g ¼ 0:001 an g-optimal solution of the e-relaxed

problem is x� ¼ ð3:500974; 2:874269Þ (see Figure 2). To find such an

Figure 2. A nonregular (CMO) problem.

ROBUST GLOBAL OPTIMIZATION 321



ðe; gÞ-approximate optimal solution, the branch and bound algorithm
described in [8] would require 591 iterations and 0.203 s (as compared
with 0.016 s, on the same computer, by the SIT approach).
This simple example illustrates the potential advantage of the SIT

approach over the usual e-approximation approach: not only a robust solu-
tion is obtained, less computational effort may be required for reaching the
same accuracy (in the above example, the essential optimal solution and
the optimal solution of the 10)6-relaxed problem are both obtained within
tolerance 10)3).

REMARK 5. Since the aim of the above example was mainly to illustrate
how the SIT Algorithm works, in solving this example we only used the
bounds provided by Lemma 2. By exploiting also the d.c. structure of the
constraints one could compute much better bounds to speed up the algo-
rithm significantly.

7. Conclusions

It has long been a common practice in nonconvex global optimization
to accept an optimal solution of the e-relaxation (Pe) of a given problem
(P) as an approximate optimal solution of (P). In this paper we demon-
strated the incorrectness of this approach which may lead to an infeasi-
ble solution very far from the optimum. To overcome the difficulty we
proposed a method for computing an essential approximate optimal
solution which is the best among all nonisolated feasible solutions. This
methodology can be applied to a class of problems that includes d.c.
optimization and monotonic programming, i.e. virtually a large majority
of continuous nonconvex global optimization problems encountered in
practice (see [5, 7]).

Table 1.

Cycle c �x f ð�xÞ Iter

1 50 (0.965645, 4.775767) 23.773594 1

2 23.772594 (1.555398, 4.333452) 20.334203 2

3 20.333203 (1.793777, 4.154668) 19.055040 3

4 19.054040 (1.900542, 4.074593) 18.502851 5

5 18.501851 (1.951129, 4.036653) 18.245696 7

6 18.244696 (1.975784, 4.018162) 18.121409 9

7 18.120409 (1.988004, 4.008997) 18.060059 10

8 18.059059 (1.994092, 4.004431) 18.029557 14

9 18.028557 (1.997131, 4.002151) 18.014347 18

10 18.013347 (1.998650, 4.001013) 18.006753 26

11 18.005753 (1.999408, 4.000444) 18.002961 35
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